Sigma (the lower-case Greek letter σ) is used to represent the standard deviation (a measure of variation) of a statistical population. The term "six sigma process" comes from the notion that if one has six standard deviations between the process mean and the nearest specification limit, there will be practically no items that fail to meet specifications. This is based on the calculation method employed in process capability studies.
In a capability study, the number of standard deviations between the process mean and the nearest specification limit is given in sigma units. As process standard deviation goes up, or the mean of the process moves away from the center of the tolerance, fewer standard deviations will fit between the mean and the nearest specification limit, decreasing the sigma number and increasing the likelihood of items outside specification.
Role of the 1.5 sigma shift
Experience has shown that in the long term, processes usually do not perform as well as they do in the short. As a result, the number of sigmas that will fit between the process mean and the nearest specification limit is likely to drop over time, compared to an initial short-term study. To account for this real-life increase in process variation over time, an empirically-based 1.5 sigma shift is introduced into the calculation. According to this idea, a process that fits six sigmas between the process mean and the nearest specification limit in a short-term study will in the long term only fit 4.5 sigmas – either because the process mean will move over time, or because the long-term standard deviation of the process will be greater than that observed in the short term, or both.
Hence the widely accepted definition of a six sigma process is one that produces 3.4 defective parts per million opportunities (DPMO). This is based on the fact that a process that is normally distributed will have 3.4 parts per million beyond a point that is 4.5 standard deviations above or below the mean (one-sided capability study). So the 3.4 DPMO of a "Six Sigma" process in fact corresponds to 4.5 sigmas, namely 6 sigmas minus the 1.5 sigma shift introduced to account for long-term variation. This is designed to prevent underestimation of the defect levels likely to be encountered in real-life operation.
Source: en.wikipedia.org/wiki/Six_Sigma
In a capability study, the number of standard deviations between the process mean and the nearest specification limit is given in sigma units. As process standard deviation goes up, or the mean of the process moves away from the center of the tolerance, fewer standard deviations will fit between the mean and the nearest specification limit, decreasing the sigma number and increasing the likelihood of items outside specification.
Role of the 1.5 sigma shift
Experience has shown that in the long term, processes usually do not perform as well as they do in the short. As a result, the number of sigmas that will fit between the process mean and the nearest specification limit is likely to drop over time, compared to an initial short-term study. To account for this real-life increase in process variation over time, an empirically-based 1.5 sigma shift is introduced into the calculation. According to this idea, a process that fits six sigmas between the process mean and the nearest specification limit in a short-term study will in the long term only fit 4.5 sigmas – either because the process mean will move over time, or because the long-term standard deviation of the process will be greater than that observed in the short term, or both.
Hence the widely accepted definition of a six sigma process is one that produces 3.4 defective parts per million opportunities (DPMO). This is based on the fact that a process that is normally distributed will have 3.4 parts per million beyond a point that is 4.5 standard deviations above or below the mean (one-sided capability study). So the 3.4 DPMO of a "Six Sigma" process in fact corresponds to 4.5 sigmas, namely 6 sigmas minus the 1.5 sigma shift introduced to account for long-term variation. This is designed to prevent underestimation of the defect levels likely to be encountered in real-life operation.
Source: en.wikipedia.org/wiki/Six_Sigma
No comments:
Post a Comment